On the Parameterized Complexity of Approximating Dominating Set
نویسندگان
چکیده
We study the parameterized complexity of approximating the k-Dominating Set (DomSet) problem where an integer k and a graph G on n vertices are given as input, and the goal is to find a dominating set of size at most F(k) · k whenever the graph G has a dominating set of size k. When such an algorithm runs in time T(k) · poly(n) (i.e., FPT-time) for some computable function T, it is said to be an F(k)-FPT-approximation algorithm for k-DomSet. Whether such an algorithm exists is listed in the seminal book of Downey and Fellows (2013) as one of the “most infamous” open problems in Parameterized Complexity. This work gives an almost complete answer to this question by showing the non-existence of such an algorithm underW[1] 6= FPT and further providing tighter running time lower bounds under stronger hypotheses. Specifically, we prove the following for every computable functions T, F and every constant ε > 0: • Assuming W[1] 6= FPT, there is no F(k)-FPT-approximation algorithm for k-DomSet. • Assuming the Exponential Time Hypothesis (ETH), there is no F(k)-approximation algorithm for k-DomSet that runs in T(k) · no(k) time. • Assuming the Strong Exponential Time Hypothesis (SETH), for every integer k ≥ 2, there is no F(k)-approximation algorithm for k-DomSet that runs in T(k) · nk−ε time. • Assuming the k-SUMHypothesis, for every integer k ≥ 3, there is no F(k)-approximation algorithm for k-DomSet that runs in T(k) · n⌈k/2⌉−ε time. Previously, only constant ratio FPT-approximation algorithms were ruled out under W[1] 6= FPT and (log1/4−ε k)-FPT-approximation algorithms were ruled out under ETH [Chen and Lin, FOCS 2016]. Recently, the non-existence of an F(k)-FPT-approximation algorithm for any function F was shown under Gap-ETH [Chalermsook et al., FOCS 2017]. Note that, to the best of our knowledge, no running time lower bound of the form nδk for any absolute constant δ > 0 was known before even for any constant factor inapproximation ratio. Our results are obtained by establishing a connection between communication complexity and hardness of approximation, generalizing the ideas from a recent breakthrough work of Abboud et al. [FOCS 2017]. Specifically, we show that to prove hardness of approximation of a certain parameterized variant of the label cover problem, it suffices to devise a specific protocol for a communication problem that depends on which hypothesis we rely on. Each of these communication problems turns out to be either a well studied problem or a variant of one; this allows us to easily apply known techniques to solve them. Weizmann Institute of Science, Israel. Email: [email protected] Shanghai University of Finance and Economics, China & Simons Institute for the Theory of Computing, USA. Email: [email protected] University of California, Berkeley, USA. Email: [email protected]
منابع مشابه
Hardness of r-dominating set on Graphs of Diameter (r + 1)
The dominating set problem has been extensively studied in the realm of parameterized complexity. It is one of the most common sources of reductions while proving the parameterized intractability of problems. In this paper, we look at dominating set and its generalization r-dominating set on graphs of bounded diameter in the realm of parameterized complexity. We show that Dominating set remains...
متن کاملParameterized Complexity of Independence and Domination on Geometric Graphs
We investigate the parameterized complexity of Maximum Independent Set and Dominating Set restricted to certain geometric graphs. We show that Dominating Set is W[1]-hard for the intersection graphs of unit squares, unit disks, and line segments. For Maximum Independent Set, we show that the problem is W[1]-complete for unit segments, but fixed-parameter tractable if the segments are axis-paral...
متن کاملA note on parameterized exponential time complexity
In this paper we define the notion of an f(k)-uniform parameterized exponential time scheme. We show that a problem can be solved in parameterized O(2p(n)) time if and only if it has an f(k)-uniform parameterized exponential time scheme (p is a polynomial). We then illustrate how our formulation can be used to show that special instances of parameterized NPhard problems are as difficult as the ...
متن کاملCapacitated Domination and Covering: A Parameterized Perspective
Capacitated versions of Vertex Cover and Dominating Set have been studied intensively in terms of polynomial time approximation algorithms. Although the problems Dominating Set and Vertex Cover have been subjected to considerable scrutiny in the parameterized complexity world, this is not true for their capacitated versions. Here we make an attempt to understand the behavior of the problems Cap...
متن کاملSolving Hamiltonian Cycle by an EPT Algorithm for a Non-sparse Parameter
Many hard graph problems, such as Hamiltonian Cycle, become FPT when parameterized by treewidth, a parameter that is bounded only on sparse graphs. When parameterized by the more general parameter cliquewidth, Hamiltonian Cycle becomes W[1]-hard, as shown by Fomin et al. [5]. Sæther and Telle address this problem in their paper [13] by introducing a new parameter, split-matching-width, which li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 24 شماره
صفحات -
تاریخ انتشار 2017